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Abstract—A nonlinear three-dimensional time-domain perfor-
mance model has been developed for a floating axisymmetric
point absorbing WEC. This model employs a set of linear partial
differential equations, in the form of a state-space model, to
replace the convolution integrals needed to solve for radia-
tion reaction. Linear time-domain results are verified against
predictions from a frequency-domain model. Nonlinear time-
domain predictions are compared back to frequency-domain
and linear time-domain predictions to show the effects of some
linearization assumptions. A simple resistive control strategy is
applied throughout these scenarios.

I. INTRODUCTION

Wave energy converters (WECs) harness the incident power
in ocean waves to produce electricity. There are three main
methods of power conversion: overtopping devices, oscillating
water columns, and wave activated bodies. In each of these
methods, a structure interacts with the incident waves: in the
case of an overtopping device a reservoir is used to store water
that will then run through a turbine to produce energy; an
oscillating water column device contains a moonpool with an
enclosed air chamber vented to atmosphere through a turbine;
wave activated bodies are structures that directly interact with
the incident waves, resulting in kinetic motion. A performance
model can be employed to study the dynamics and power ab-
sorption of a WEC. In addition to the complex hydrodynamics
of floating body in irregular waves, such a model must account
for the influence of a power conversion chain (PCC), which
may exhibit an arbitrary control input as well as stroke and
force limitations.

The wave-structure interaction is often modeled using po-
tential flow boundary element method (BEM) solvers. Potential
flow is based on linear wave theory and the principle of
superposition. Employing these assumptions, BEM codes can
solve for a body’s radiation and excitation reactions, the
former due to the motion of the body in calm seas and the
later due to the effect of waves on a stationary body. Small
amplitude motions of the body when subject to waves can
be determined with a hydrodynamic equation of motion that
includes the superposition of the excitation, radiation, and
hydrostatic restoring forces.

The frequency-dependent hydrodynamic terms obtained
from a BEM code can be transitioned to the time-domain using
the (complex) inverse Fourier transform. Both the excitation
and radiation hydrodynamic forces are frequency-dependent
and hence possess a corresponding impulse response function
(IRF) that must be identified. The convolution of these IRFs

with their respective time-dependent multipliers (free surface
elevation and structure velocity) results in time-domain esti-
mations of their effects. A set of linear partial differential
equations, represented by a state-space model, have been
shown to be an efficient alternative to direct computation of
these convolution integrals.

A WEC can be viewed as a coupled hydrodynamic-
mechanical-electrical system, as the motion of the device
affects power production and the configuration of the PCC
can similarly affect rigid-body dynamics. A WECs PCC is
simultaneously capable of increasing a devices performance
through dynamic control, while also potentially decreasing
the performance through limitations placed on stroke length
(in the case of translational conversion) or rotation rate (in
the case of rotational conversion). Further, limitations on the
maximum allowable force (or torque) produced by a PCC must
also be modeled and considered when accurately modeling the
performance of a device. Hence, a realistic performance model
must incorporate both of these strong influences to accurately
predict absorbed power.

This paper explores the development and configuration of
a time-domain performance model for a specific WEC of
interest. Section II describes the WEC, its geometric character-
istics and mode of operation. The theoretical framework and
implementation of frequency- and time-domain performance
models for this WEC are discussed in Section III. Section IV
presents the results from a series of analyses focused on the
effects of changes in model configuration. Conclusions from
the study and suggestions for future work are discussed in
Section V.

II. DEVICE GEOMETRY

This study focuses on the dynamic analysis of an axisym-
metric point absorbing WEC, referred to herein as the planar
motion point absorber (PMPA), shown in Fig. 1. The PMPA
is designed for use in a series numerical and physical (model-
scale) tests sponsored by the U.S. Department of Energy to
study the implementation and effectiveness of PCC control
strategies. The axisymmetric float is connected to ground via a
vertical PCC arm, located above the float. The top mount of the
PCC is restricted to translate in the horizontal plane. A spring
restoring force is applied to this translation thus mimicking the
effect of a mooring system on the device. A two-axis universal
joint, located at the center of gravity of the float, allows for
pitch and roll, but not yaw. The device’s modes of motion are
shown by red arrows in Fig. 1.
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Fig. 1. PMPA geometry and configuration.

TABLE I. RIGID BODY AND GENERAL PROPERTIES OF THE PMPA.

Property, symbol Value

Mass, m 1.8× 107 kg
Draft, T 9 m
Radius, r 15 m
Center-of-gravity, [xG, yG, zG] [0 0 -4.852] m
Center-of-buoyancy, [xB , yB , zB ] [0 0 -3.352] m
Moments-of-inertia, [Ixx, Iyy, Izz ] [2.12 2.12 3.80]×108 kg m2

Mooring spring constants, [Cm11
,Cm22

] [31.526 31.526] kN/m
End-stop constants, [αES, βES] [7.10 kN/m 31.0 N s/m ] ×105

Fig. 1 also gives dimensions for the float’s submerged
geometry. The rigid-body properties of the PMPA were de-
termined assuming a uniform distribution of mass combined
with a point mass to lower the center of gravity (COG) below
the center of buoyancy (COB). The rigid-body properties of the
PMPA are given in Table I. Both the COB and COG locations
are reported with respect to the still-water line. (Dimensions
in Fig. 1 and Table I, as well as results presented throughout
this paper, are given in full-scale.)

Higher-order panels representing the three-dimensional
wetted surface of the PMPA were used to model the PMPA’s
submerged geometry in the BEM potential flow solver WAMIT
[1]. Utilizing the device’s planes of symmetry (x = 0 and
y = 0), one quarter of the float was modeled using 704 panels.

III. PERFORMANCE MODEL

Both frequency- and time-domain performance models
were developed to analyze the dynamic motions and power
production of the PMPA. The frequency-domain model serves
to verify the implementation of the time-domain model at
it’s most simplified level. (The time-domain model has been
implemented using varying levels of complexity, which will
be discussed in the subsequent sections.)

Fig. 2. Inertial and body-fixed coordinate system employed in time-domain
model.

A. Coordinate Systems and Transformations

The inertial and body-fixed coordinate systems employed
in the models are illustrated in Fig. 2. It is convenient to center
the body-fixed coordinate system at the center of gravity. The
position and orientation of the float in the inertial frame is
given by the vector η.

η =

[
ε
−−
ϑ

]
=



x
y
z
−−
φ
θ
ψ

 (1)

The inertial coordinate system is oriented such that the posi-
tions x, y and z correspond to North, West and Up respectively.

Velocities in the body-fixed frame are similarly given by
the vector ξ̇.

ξ̇ =


u
v
w
p
q
r

 (2)

The elements of ξ̇ correspond with surge, sway, heave, roll,
pitch and yaw velocities respectively. Note that for the PMPA,
ψ and r are always zero.

The body’s center of buoyancy and gravity can be de-
fined in the body-fixed frame as rB = [xB yB zB ]

T and
rG = [xG yG zG]

T respectively. Table I gives the locations
of the PMPA’s center of buoyancy and gravity.

An Euler angle transformation matrix, J(ϑ), can be em-
ployed to solve for the change in the float’s inertial position
(see e.g., [2], [3]).

η̇ =

[
ε̇

ϑ̇

]
= J(ϑ)ξ̇ (3)

The transformation matrix J(ϑ) is dependent on the rotation
order. If a z-y-x order is employed, a singularity occurs at pitch
angles of 90◦. (A pitch angle of 90◦ would not be physical
for the PMPA, as it is constrained in pitch by its vertical PCC



arm.) Using this rotation order, J(ϑ) can be defined as a block-
diagonal matrix.

J =

[
R(ϑ) 03×3
03×3 T(ϑ)

]
. (4)

For the PMPA, in which no rotation is allowed about the
vertical axis (ψ = 0), the upper block of the transformation
matrix is given as follows.

R(ϑ) =

[
cθ sθsφ cφsθ
0 cφ −sφ
−sθ cθsφ cθcφ

]
(5a)

T(ϑ) =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
(5b)

In (5), the letters s, c and t represent the trigonometric
functions sine, cosine and tangent respectively.

Simplifications to the transformation matrix can be em-
ployed to reduce the complexity of the equation of motion. The
1st-order transformation removes the trigonometric dependence
resulting in the following component blocks.

R(ϑ)1
st

=

[
1 0 θ
0 1 −φ
−θ φ 1

]
(6a)

T(ϑ)1
st

=

[
1 0 θ
0 1 −φ
0 φ 1

]
(6b)

To allow for comparison with a linear frequency-domain
model, the 0th-order formulation of transformation matrix is
required. The 0th-order transformation matrix is a 6×6 identity
matrix.

B. Time-Domain Model

A time-domain model was developed using the integro-
differential formulation introduced by Cummins [4]. The time-
domain equations of motion for a floating body can be defined
in the body-fixed coordinate system illustrated in Fig. 2 by

[MRB + A∞] ξ̈ +

∫ t

0

Kr(t− λ)ξ̇ (λ) dλ

+ J (ϑ)
−1

(G + Cm) η + τv = τe + τu.

(7)

Here, MRB is the rigid-body mass matrix, which is a function
of the body mass, m, the center of gravity, rG and the rigid-
body moments of inertia, Iij . At this stage in the development
of the model, the mass of the PCC assembly is considered to
be negligible; future model versions will address this issue.
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Fig. 3. Frequency dependent added mass, A33(ω), and damping, B33(ω),
for PMPA float in the heave-heave response.

MRB =


m 0 0 0 −mzG −myG
0 m 0 −mzG 0 −mxG
0 0 m myG −mxG 0
0 mzG myG Ixx Ixy Ixz

mzG 0 mxG Iyx Iyy Iyz
−myG mxG 0 Izx Izy Izz


(8)

Combining (7) and (3), the motion of the body in the
inertial frame can be integrated in time. Note that, as (7)
employs a non-inertial reference frame, there exist second-
order dynamic effects (i.e., Coriolis and centripetal) that are
not included in the current formulation. These effects, as well
as terms to account for the mass of the PCC assembly, will be
included in subsequent versions of this model.

1) Added-Mass and Radiation Damping: Fig. 3 shows the
added mass, A33(ω) − A33∞ , and damping, B33(ω), for the
PMPA float in the heave-heave response. Here, A∞ is the
infinite-frequency added mass matrix (A∞ = A(ω = ∞)).
The radiation IRF, which is also known as the memory or
retardation kernel, can be obtained from either of two inverse
Fourier transforms [4], [5]. The velocity-based IRF, Kr, is
given by

Kr(t) = − 2

π

∞∫
0

ω [A(ω)−A∞] sin(ωt) dω (9a)

=
2

π

∞∫
0

B(ω) cos(ωt) dω. (9b)

As B(ω) tends to converge to zero more quickly than A(ω),
(9b) is generally preferred for this application.

It can be shown, using Green’s theorem (see e.g., [6]), that
both the added mass, A(ω), and damping, B(ω), matrices are
symmetric (i.e., Aij(ω) = Aji(ω)). Note that this conclusion
is dependent on the assumption of an ideal fluid.



2) Hydrostatic and Mooring Restoring: The hydrostatic-
gravitational restoring balance is given by the product Gη. For
a body in which the center of gravity and center of buoyancy
lie on the same vertical line (i.e., the body is statically stable),
G is a sparse matrix with the nonzero entries

G33 = ρgAwp (10a)

G44 = ρg∀
(
S22

∀ + zB − zG
)

(10b)

G55 = ρg∀
(
S11

∀ + zB − zG
)
. (10c)

Here, ρ gives the density of the water, g gives the acceleration
due to gravity and ∀ is the submerged volume of the body.
The area of the waterplane is given by Awp while terms Sij
are the 2nd-moments of the waterplane area. The terms in the
parentheses of (10b) and (10c) are equivalent the to transverse
and longitudinal metacentric heights respectively. Note that, for
any body with a waterplane area that does not remain constant
with draft, the formulation shown in (10) is a linearization.

The mooring-restoring forces are represented by the prod-
uct Cmη. For the PMPA, the mooring system is approximated
as linear springs in lateral plane. As such, Cm is a sparse
matrix where only Cm11

and Cm22
are nonzero with the value

given in Table I. Note that to be applied in the body-fixed
frame, both the mooring and hydrostatic restoring reactions
must be transformed using J(ϑ)−1.

3) Viscous Damping: Viscous damping phenomena are rep-
resented in (7) by the variable τv . In this study only the linear
damping formulation was considered. However, future versions
of the time-domain model will incorporate more accurate
viscous damping formulations, like the Morison formulation
[7]. The linear viscous damping is represented with

τv = BL
v ξ̇. (11)

This formulation uses a constant coefficient matrix BL
v . For

this study, the elements of BL
v were set as a fraction of the

critical damping factor.

BL
v = 2γv

√
(MRB + A∞) (G + Cm) (12)

This formulation enables the reduction of responses at reso-
nance(s) [8]. The viscous damping constant in (12), γv , was
set equal to 0.02.

4) Excitation Reaction: In the frequency domain, the exci-
tation force can be characterized by the product of the complex
excitation response function and wave elevation function.

τ̂e(ω) = Ĥ(ω)ζ̂(ω) (13)

For an a priori known wave history, this formulation can be
used to obtain the an excitation force history in the time-
domain. For a finite number, N , of component waves, each

with a frequency of ω = n∆ω, (13), the related components
of the complex excitation can be written as

τ̂e,n = Ĥnζ̂n. (14)

The time history of the excitation force can be obtained by
summing the contribution of N of component waves.

τe(t) =

N∑
n=1

<
{
τ̂e,ne

iωnt
}

(15)

The nth component of the complex wave elevation, with a wave
with a frequency of n∆ω, can be obtained from the energy
density at that frequency, Sζ,n = Sζ(n∆ω) and a random
phase angle, σζ,n .

ζ̂n =
√

2Sζ,n∆ωeiσζ,n (16)

The methodology shown in (14 - 16) can be applied for a
monochromatic wave by setting N = 1.

Note that the method described above assumes complete
knowledge of the future wave history. An alternative approach,
in which this assumption may be relaxed, employs the con-
volution of a non-causal excitation IRF and the free surface
elevation. To implement this approach, the non-causal IRF
must be “causalized” (see e.g., [9]).

5) PCC Reaction and Control Strategy: The vector τu is
defined by the reaction imposed by the PCC in the inertial
frame, τ̃u, along with the current position and orientation of
the float.

τu = J(ϑ)−1τ̃u, (17)

where, since the PCC of the PMPA remains vertical at all
times, τ̃u can be simply defined by the a scalar, fu.

τ̃u =


0
0
fu
0
0
0

 . (18)

In this study, the PCC reaction is defined by a simple
resistive control strategy. Hence, fu is given by the product
of a constant factor, Rload, and the extension rate PCC arm,
˙̀.

fu = Rload ˙̀ (19)

The PCC extension rate, ˙̀, can be determined from change in
the float’s inertial position (given by (3)).

˙̀ = ż = η̇3 (20)



The power absorbed by the device is the product of the
force, fu, in the PCC and the velocity of PCC arm.

pabs(t) = fu ˙̀ = (Rload ˙̀) ˙̀ (21)

An optimal Rload can be determined to maximize power
absorption. While a numerical optimization is required in
irregular spectra, a generic1 analytic solution exists for the
optimal Rload in regular waves (see e.g., [10]).

Roptload =
Ĥ(ω)(

B(ω) + BL
v + iω(MRB + A(ω)− G+Cm

ω2 )

) .
(22)

6) PCC Constraints: Two of the constraints typically seen
in the operation of real WEC devices, PCC force saturation
limits and stroke length limitations, have been applied within
the time-domain model.

A PCC force saturation limit was implemented by limiting
the force applied by the PCC, τu, to a saturation value at τmaxu .

τu = sign (−fu) min (|−fu| , |τmaxu |) (23)

Similarly, a hard limit can be imposed on the extension
of the PCC to mimic a physical end-stop. The instantaneous
length of the PCC can be defined by

` = z. (24)

The extension of the PCC can thus be defined by the difference
from its central position, `0.

∆` = `− `0 (25)

Motion constraints were applied to limit the extension of
the PCC (|∆`| ≤ ∆`max) following the repulsive potential
formulation given by Hals et al. [11].

fES = sign (∆`)αESγh (γ)− βES
˙̀h (γ)

where γ = |∆`| −∆`max

(26)

Here, h denotes the Heaviside step function. The constants
αES and βES are the spring and damping end-stop parameters
respectively, which must be tuned to obtain the desired be-
havior. The values used for this study are given in Table I.
The end-stop force, fES, given by (26), is incorporated in the
model following the same means as the resistive PCC reaction
(17-18).

1This is strictly accurate only when no transformation matrix is required to
accurately model the device (e.g., a single-degree-of-freedom heave device).

C. Time-Domain Model Numerical Implementation

1) Radiation and Convolution Replacement: The presence
of a convolution integral in (7) is undesirable, as it is compu-
tationally expensive to evaluate and limits the use of analysis
and control design methods. For these reasons, it is useful to
replace the convolution integrals that appear in (7) with another
mathematical model. The computational expense of evaluating
the convolution integral is partially driven by the need to store
the results from a simulation time step throughout the solution
process and use them to re-evaluate the entire convolution
integral. This issue is compounded by the fact that for a 6
degree-of-freedom system, there can, in general, exist thirty-
six unique IRFs to be convolved.

The most common method used to lessen the numerical
cost of evaluating a convolution integral is to replace it by a
linear ordinary differential equation (ODE), written as a state-
space model (SSM).

(
µ(t) =

∫ t

0

Kr (t− λ) ξ̇ (λ) dλ

)
⇔
(
ẋr = Arxr + Brξ̇(t)

µ̌(t) = Crxr

)

where xr ∈ Rn×1 Ar ∈ Rn×n
Br ∈ Rn×1 Cr ∈ R1×n

(27)

While the order of system, n, depends on the nature of
the specific IRF, radiation IRFs can often be represented by
systems with 3 ≤ n ≤ 8. The matrices Ar, Br and Cr must
be chosen to produce a vector µ̌ to mimic µ. The radiation
state vector, xr, has no direct physical meaning.

An SSM to represent a given IRF can be obtained using
methods operating in either the time or frequency domain (see
e.g., [12]–[14]). In this study, a time-domain identification
was implemented using realization theory [12]. Each non-
zero element of the PMPA’s radiation kernel matrix, Kr, was
represented with an 8th-order SSM.

For a body with no planes or axes of symmetry (and
assuming a real fluid), there exist twenty-one distinct radiation
terms that compose a symmetric (Kr,ij = Kr,ji) 6×6 matrix,
Kr. Thirty-six convolutions must be evaluated to obtain the
radiation reaction µ ∈ <6×1.

µ =



µ1 =
6∑
j=1

µ1,j

µ2 =
6∑
j=1

µ2,j

...

µ6 =
6∑
j=1

µ6,j


. (28)

If the convolution terms are to be replaced by SSMs, there
must exist up to thirty-six sets of SSMs. To reduce complexity
and computational load, we can assemble the matrices of
these systems into into a single SSM. Taghipour [15] used



such a method without reporting the form of the matrices
and Duarte [16] presented a matrix assembly formulation that
follows a somewhat different concept.2 We will consider the
task of assembling a compound SMM in a two step process,
as illustrated in Fig. 4.

1) Assemble six SSMs such that each element of µ̌ can
be obtained by evaluating a SSM. The component
matrices created by this step of the process are
written with square brackets: [Ar]

(i)
, [Br]

(i)
, [Cr]

(i)

and [xr]
(i).

2) Assemble the SSMs from Step 1 into a single SSM
so that the vector µ̌ can be obtained by evaluating a
single SSM. The component matrices created by this
step of the process are written with curly brackets:
{Ar}, {Br}, {Cr} and {xr}

This process can be described as follows:

Step 1 Each element of µ̌ can be defined by a single SSM.

[ẋr]
(i) = [Ar]

(i)
[xr]

(i) + [Br]
(i)
ξ̇

µ̌i = [Cr]
(i)

[xr]
(i)

(29)

The [Ar]
(i) matrix can be assembled as a block diagonal of

the dimension
[

6∑
i=1

ni ×
6∑
i=1

ni

]
.

[Ar]
(i)

=

Ar
(i,1) 0

. . .
0 Ar

(i,6)

 (30)

Here, Ar
(i,j) is the Ar matrix that corresponds to µ̌i,j , with

a similar notation for Br
(i,j), Cr

(i,j) and x(i,j)r ). The [Br]
(i)

matrix is a block diagonal of the dimension
[

6∑
i=1

ni × 6

]
.

[Br]
(i)

=

Br
(i,1) 0

. . .
0 Br

(i,6)

 (31)

The matrix [Cr]
(i) ∈ <1×6n is given as a vector of the

dimension
[
1×

6∑
i=1

ni

]
.

[Cr]
(i)

=
[
Cr

(i,1) Cr
(i,2) · · · Cr

(i,6)
]
. (32)

The state vector [xr]
(i) ∈ <6n×1 is a vector of the dimension[

6∑
i=1

ni × 1

]
.

[xr]
(i) =


x
(i,1)
r

x
(i,2)
r

...
x
(i,6)
r

 (33)

2Duarte’s formulation relies on the fact that both the added mass, A(ω),
and damping, B(ω), matrices are considered symmetric.

Step 2 This assembly methodology can be taken one step
further to let the vector µ̌ be defined by a single SSM.

˙{xr} = {Ar} {xr}+ {Br}ξ̇
µ̌ = {Cr} {xr}

(34)

Here, the SSM’s matrices can be given by the following
assemblies, shown both in terms of the intermediary [Ar]

(i),
[Br]

(i), [Cr]
(i) and [xr]

(i) matrices and the matrices of the
original thirty-six SSMs.

{Ar} =

[Ar]
(1) 0

. . .
0 [Ar]

(6)



=


A(1,1) 0

A(1,2)

. . .
0 A(6,6)


(35)

{Br} =


[Br]

(1)

[Br]
(2)

...

[Br]
(6)

 =




Br

(1,1) 0
. . .

0 Br
(1,6)


...

Br
(6,1) 0

. . .

0 Br
(6,6)




(36)

{Cr} =

[Cr]
(1) 0

. . .
0 [Cr]

(6)



=


[
Cr

(1,1) · · · Cr
(1,6)

] 0
. . .

0 [
Cr

(6,1) · · · Cr
(6,6)

]


(37)



Step 2Step 1

36 total SSMs

ẋ
(1,1)
r = Ar

(1,1)x
(1,1)
r + Br

(1,1)ξ̇1

µ̌11 = Cr
(1,1)x

(1,1)
r

ẋ
(2,1)
r = Ar

(2,1)x
(2,1)
r + Br

(2,1)ξ̇2

µ̌21 = Cr
(2,1)x

(2,1)
r

ẋ
(6,1)
r = Ar

(6,1)x
(6,1)
r + Br

(6,1)ξ̇6

µ̌61 = Cr
(6,1)x

(6,1)
r

ẋ
(1,2)
r = Ar

(1,2)x
(1,2)
r + Br

(1,2)ξ̇1

µ̌12 = Cr
(1,2)x

(1,2)
r

ẋ
(2,2)
r = Ar

(2,2)x
(2,2)
r + Br

(2,2)ξ̇2

µ̌22 = Cr
(2,2)x

(2,2)
r

ẋ
(1,6)
r = Ar

(1,6)x
(1,6)
r + Br

(1,6)ξ̇1

µ̌16 = Cr
(1,6)x

(1,6)
r

ẋ
(6,6)
r = Ar

(6,6)x
(6,6)
r + Br

(6,6)ξ̇6

µ̌66 = Cr
(6,6)x

(6,6)
r

6 total SSMs

[ẋr](6) = [Ar]
(6)[xr](6) + [Br]

(6)ξ̇

µ̌6 = [Cr]
(6)[xr](6)

[ẋr](2) = [Ar]
(2)[xr](2) + [Br]

(2)ξ̇

µ̌2 = [Cr]
(2)[xr](2)

[ẋr](1) = [Ar]
(1)[xr](1) + [Br]

(1)ξ̇

µ̌1 = [Cr]
(1)[xr](1)

1 SSM

˙{xr} = {Ar} {xr} + {Br}ξ̇
µ̌ = {Cr} {xr}

Fig. 4. Multi-degree-of-freedom convolution SSM assembly process: Step 1 moves from one for system for each radiation term (thirty-six) to one system for
each response mode (six); Step 2 moves to a single state-space system.

TABLE II. MATRIX DIMENSIONS OF ASSEMBLED
MULTI-DEGREE-OF-FREEDOM CONVOLUTION REPLACEMENT SSMS.

Term Rows Columns

{Ar}
6∑
i=1

6∑
j=1

ni,j

6∑
i=1

6∑
j=1

ni,j

{Br}
6∑
i=1

6∑
j=1

ni,j 6

{Cr} 6

6∑
i=1

6∑
j=1

ni,j

{xr}
6∑
i=1

6∑
j=1

ni,j 1

{xr} =


[xr]

(1)

[xr]
(2)

...

[xr]
(6)

 =




x
(1,1)
r

...

x
(1,6)
r


...

x
(6,1)
r

...

x
(6,6)
r




(38)

The dimensions of the matrices defined in (35-38) are given
in Table II. The variable ni,j is used here to denote the order
of the (i, j)th state-space model. Thus, for instance, if you had
a system in which every radiation term were represented by
3rd-order SSM, the assembled matrices would be of the follow
dimensions. Note that each mode may be represented by an
SSM of arbitrary order.

{Ar} ∈ <108×108 {Br} ∈ <108×6

{Cr} ∈ <6×108 {xr} ∈ <108×1

where if ni,j = 3,

6∑
i=1

6∑
j=1

ni,j = 108 = N

2) System Solution: Working from the physical system
defined by (7), it is convenient to define the states of the model
as follows:

x1:N = xr
xN+1:N+6 = η

xN+7:N+12 = ξ̇ ,

(39)

where N is the order of the full radiation SSM. Thus the
system state vector can be written as

xsys =


x̂1
−−
x̂2
−−
x̂3

 =



xr|1
...

xr|N
−−
η1
...
η6
−−
ξ̇1
...
ξ̇6



. (40)

A system of differential equations for this state vector can be
written as

x̂′1 ={Ar}x̂1 + {Br}x̂3
x̂′2 =J (x̂2) x̂3

x̂′3 =M−1
[
τe + τu −

(
{Cr}x̂1 + BL

v x̂3 + (G + Cm)x̂2
)]
.

(41)

Here, M is the sum of the rigid body and added mass matrices
(M = MRB + A∞). For an arbitrary excitation, τe, (41)
can be advanced in time via numerical integration. This was
accomplished in MATLAB using the variable step Runge-
Kutta solver ode45.

Functions from the MSS Toolbox [17] were employed in
this model to provide the transformation matrix, J(ϑ), (de-
scribed Section III-A) and identification of SSMs to represent
radiation affects (described in Section III-C1).
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Fig. 5. Heave RAOs for PMPA in waves with heights of H = 0.2, 1.0, 1.4 and
2.0 m, all with an angle of incidence of β = 34◦. Response magnitudes are
shown from the frequency-domain model and from the time-domain model,
using 0th, 1st and full-order coordinate system transformation matrices.

D. Frequency-Domain Model

The frequency-domain equations of motion for a floating
body can be defined in the inertial coordinate system illustrated
in Fig. 2 by

Ĥ(ω)ζ̂(ω) =J0th(ϑ)

(
B(ω) + BL

v + iω(MRB + A(ω))

)
η̇+

G + Cm

iω
η̇ +Rloadη̇.

(42)

The same hydrodynamic parameters, hydrostatic restoring,
mooring, viscous damping, and control strategies discussed
above in III-B are employed in this model. Since the
frequency-domain requires linearity, no constraints are im-
posed on the PCC operation. Further, the 0th-order transfor-
mation matrix J0th(ϑ) is used to adhere to requirements of
linearity as discussed above.

IV. RESULTS

A. Regular Wave Response

To verify the time-domain model, response amplitude op-
erators (RAOs) were produced for the PMPA when subject to
the optimal resistive loading (22) and compared against those
obtained using the frequency-domain model subject to the
same control. Nonlinear effects were investigated by reviewing
the response of the PMPA in waves of increasing height
(H = 0.2, 1.0, 1.4, 2.0 m), all with an angle of incidence of
β = 34◦. The time-domain model was run using each of
the 0th-, 1st- and full-order coordinate system transformation
matrices discussed in Section III-A. The heave RAOs from this
series of simulations are shown in Fig. 5. It is clear from Fig. 5
that the transformation matrix J(ϑ) plays a more dominant
role in waves of increasing height, as would be expected. The
surge, sway, roll and pitch RAOs for the 0.2 m wave series are
shown in Fig. 6. As in Fig. 5, the J0th(ϑ) time-domain results
match the frequency domain results well.
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Fig. 6. Surge, sway, roll and pitch RAOs for PMPA in waves with H =0.2 m,
with an angle of incidence of β = 34◦. Response magnitudes are shown from
the frequency-domain model and from the time-domain model, using 0th-
, 1st- and full-order coordinate system transformation matrices. The legend
from Fig. 5 applies to the line-series in this figure.

B. Response when subject to PCC constraints

Fig. 7 shows a time history of the PMPA float’s position
and power absorption during regular waves with H = 1.0 m,
ω = 0.78 rad/s and β = 0◦. Predictions are shown for three
different model constraint configurations (see Section III-B6
for a discussion on the implementation of these constraints):

• Unconstrained - No constraints are applied to the
model.

• Extension limit - The extension of the PCC arm is
limited to ±0.2 m.

• Force saturation - The total force applied by the PCC
is limited to 2× 105 N, which is roughly 25% of the
optimal resistive load at this frequency.

Both the phase and magnitude of the float’s response can be
observed to change due to the introduction of these constraints.
The average absorbed power over the period shown in Fig. 7
was 84.2, 56.3 and 44.7 kW for unconstrained, extension limit
and force saturation configurations respectively. Note that the
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Fig. 7. PMPA float vertical position, z, force, fu, and absorbed power,
pabs, for regular waves with H = 1.0m and ω = 0.78 rad/s. Predictions
shown for unconstrained, PCC extension limited and force saturation limited
time-domain model.

response of the extension limit constrained model is highly
dependent on the tuning factors of the end-stop function (26)
along with the incident wave parameters.

V. CONCLUSION

A time-domain model for a point absorber WEC in six
degrees-of-freedom was developed based on Cummins’ for-
mulation and verified against a frequency-domain model. A
series of simulations were run to show the effect of a posi-

tion linearization assumption. As expected, this assumption
looses validity as wave, and motion, amplitude increases.
PCC extension limitation and force saturation constraints were
demonstrated and shown to affect the response of the device
and its power absorption.

Future work will focus on expansion of the time-domain
model to give a more complete description of the PMPA
and include more of the nonlinearities neglected in (7).
Additionally, upcoming experimental testing will allow for
hydrodynamic coefficients to be more accurately determined.
Further analysis will also be required to better understand the
impact of device constraints on power absorption as well as
control performance.
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